Friday, 16 September 2011

Solve Rational Inequalities


To solve rational inequalities, it helps by rewriting with the right side equal to zero. A number line can be used to consider intervals. Then pick a number of each interval to determine the sign of the factors. 

For example, x/x+1 < 2x/x-2
x/x+1 - 2x/x-2 <0


x(x-2) - 2x(x+1) < 0
    (x-2)(x+1)


x^2-2x-2x^2-2x < 0
    (x-2)(x+1)


-x^2 - 4x   < 0
(x-2)(x+1)


-x ( x+4 )   < 0
(x-2)(x+1)


Restriction of x:
x cannot be -1 and 2.



1. List all the factors.

2. Use number line/table to help to consider each intervals.
3. Pick a number and test the value. 

Factors / Intervals
x < -4
-4 < x < -1
-1 < x < 0
0 < x < 2
x > 2
Test Values
-5
-2
-0.5
1
3
-x
+
+
+
-
-
x+4
-
+
+
+
+
x-2
-
-
-
-
+
x+1
-
-
+
+
+

-
+
-
+
-

x < -4, -1 < x < 0 and x > 2 are negative or less than zero. 
Hence the solution of x/x+1 - 2x/x-2 <0 are x < -4, -1 < x < 0 and x > 2.

Source
McGraw-Hill Ryerson Advanced Functions 12

A simple example from this video :)

No comments:

Post a Comment